TEORIA GRACELI TENSORAL  DE GRAVITAÇÃO.



 


G* =  = OPERADOR QUÂNTICO DE GRACELI.


    EQUAÇÃO DE GRACELI.. PARA INTERAÇÕES DE ONDAS E INTERAÇÕES DAS FORÇAS FUNDAMENTAIS

/

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 


 { -1 / G* =   / T] /  c} =

G* = = OPERADOR DE GRACELI = Em mecânica quântica, o OPERADOR DE GRACELI [ G* =]  é um operador cujo observável corresponde à  ENERGIA TOTAL DO SISTEMA , TODAS AS INTERAÇÕES INCLUINDO TODAS AS INTERAÇÕES DAS FORÇAS FUNDAMENTAIS [AS QUATRO FORÇAS] [ELETROMAGNÉTICA, FORTE, FRACA E GRAVITACIONAL], INTERAÇÕES SPINS-ÓRBITAS, ESTRUTURRA ELETRÔNICA DOS ELEMENTOS QUÍMICOS, TRANSFORMAÇÕES, SISTEMAS DE ONDAS QUÂNTICAS, MOMENTUM MAGNÉTICO de cada elemento químico e partícula, NÍVEIS DE ENERGIA , número quântico , e o  sistema GENERALIZADO GRACELI.


COMO TAMBÉM ESTÁ RELACIONADO A TODO SISTEMA CATEGORIAL GRACELI, TENSORIAL GRACELI DIMENSIONAL DE GRACELI..



    /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =



Momento magnético do eletrão[editar | editar código-fonte]

O momento (dipolar) magnético de um eletrão é:


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =


 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    = /


 

é o tensor de tensão de Maxwell e c é a velocidade da luz. Assim,  é expresso e medido em unidades de pressão do S.I. (pascal).

onde  é o tensor eletromagnético e onde  é o tensor métrico de Minkowski [en] de assinatura métrica (− + + +). Ao usar a métrica com assinatura (+ − − −), a expressão à direita do sinal de igual terá sinal oposto.





tensor tensão de Cauchy na mecânica do contínuo, representado universalmente pelo símbolo , também chamado tensor tensão verdadeira[1] ou simplesmente tensor tensão, denominado em memória de Augustin-Louis Cauchy, é um tensor tridimensional de segunda ordem, com nove componentes , que define completamente o estado de tensão em um ponto no domínio de um corpo material em sua configuração deformada. O tensor relaciona um vetor diretor de comprimento unitário n com o vetor tensão T(n) sobre uma superfície imaginária perpendicular a n,

   /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =


Para os eixos coordenados da Figura 1, usando notação indicial,



modelo tensorial graceli da gravitação.

A equação do campo de Einstein descreve como o espaço-tempo se curva pela matéria e, reciprocamente, como a matéria é influenciada pela curvatura do espaço-tempo, ou digamos, como a curvatura dá lugar à gravidade.

A equação do campo se apresenta como se segue:

   /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =


onde o tensor  é a curvatura de Einstein, uma equação diferencial de segunda ordem em termos do tensor métrico , e  é o tensor de energia-momento. A constante de acoplamento se dá em termos de  é Pi é a velocidade da luz e  é a constante gravitacional.

O tensor da curvatura de Einstein se pode escrever como

   /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =


onde além disso  é o tensor de curvatura de Ricci é o escalar de curvatura de Ricci e  é a constante cosmológica.

A equação do campo portanto também pode apresentar-se como se segue:

   /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =


 é um tensor simétrico 4 x 4, assim que tem 10 componentes independentes. Dada a liberdade de escolha das quatro coordenadas do espaço-tempo, as equações independentes se reduzem em número a 6.

Estas equações são a base da formulação matemática da relatividade geral.

Interpretacão geométrica da Equação de Einstein[editar | editar código-fonte]


A Teoria da relatividade mostra que a massa dos corpos depende do observador, pois esta varia com sua velocidade aparente, tal como no conceito de simultaneidade, e portanto também o espaço que se observa (formado por todos os eventos simultâneos). Assim, a equação de Einstein pode enunciar-se também afirmando que para cada observador, a curvatura escalar  do espaço é proporcional à densidade aparente :

   /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =


onde c = 3 × 1010 [cm s-1] é a velocidade da luz e G = 6,67 × 10-8 [cm³ s-2 g-1] é a constante da gravitação universal. De acordo com o significado geométrico da curvatura escalar, esta igualdade afirma que em uma esfera de massa M e densidade constante, o excesso radial (a diferença entre o raio real e o raio que corresponderia na geometria euclidiana a uma esfera de igual área) é igual a

   /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =


Por exemplo, no caso da Terra o excesso radial é de 0,15 cm e no caso do Sol é de aproximadamente 500 metros.

É notável que, esta equação, que introduz mínimas correções nas fórmulas da geometria euclidiana, atinja quase todas as equações conhecidas da Física macroscópica. Com efeito, quando a velocidade da luz c tende ao infinito, dela se derivam a Lei newtoniana da Gravitação, a Equação de Poisson e, portanto, o caráter atrativo das forças gravitacionais, as equações da mecânica dos fluidos (equação de continuidade e equações de Euler), as leis de conservação da massa-energia e do momento, o caráter euclidiano do espaço, etc..

Igualmente se derivam todas as leis de conservação relativísticas, e que a existência de campos gravitacionais e de massa só são possíveis quando o espaço tem dimensão maior que 2. Mais ainda, se supõe que o espaço tem dimensão 4 (as três que vemos habitualmente mais uma pequeníssima dimensão circular extra, aproximadamente do tamanho do chamado comprimento de Planck ~  cm) da equação de Einstein se deduzem a teoria clássica do electromagnetismo: as equações de Maxwell e, portanto, a lei de Coulomb, a Conservação da carga elétrica e a lei de Lorentz.

Equações de Einstein-Maxwell[editar | editar código-fonte]

Se o tensor energia-momento  é aquele de um campo eletromagnéticoi.e. se o tensor momento-energia eletromagnético

   /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =


é usado, então as equações de campo de Einstein são chamadas equações Einstein-Maxwell:

   /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =






TEORIA tensorial graceli  DA GRAVITAÇÃO.

Teorias f(R) de Gravitação ou teorias f(R) são um tipo de teoria da interação gravitacional que generaliza a teoria da Relatividade Geral. A forma da função f(R), que na formulação Lagrangeana da Relatividade Geral é idêntica ao escalar de Ricci, se torna arbitrária, podendo ser construída de tal maneira a modificar a relação entre geometria e a dinâmica do espaço-tempo.

Teorias desse tipo são estudadas como uma forma de alternativa ao modelo padrão cosmológico, sem a necessidade da hipótese de uma constante cosmológica ou energia escura, assim como modelos de Universo Primordial[1], e de teorias de ordem superior em gravidade quântica [carece de fontes].

Formulação Matemática[editar | editar código-fonte]

As equações de campo da Relatividade Geral podem ser obtidas a partir da variação funcional da ação de Einstein-Hilbert, dada por

   /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =

onde a métrica é a variável dinâmica da teoria.

A ideia das teorias f(R) é generalizar essa ação de tal maneira que o integrando da ação não seja mais o escalar de Ricci R mas uma função arbitrária do mesmo:

   /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =

Equações de Campo[editar | editar código-fonte]

Se assumirmos o formalismo métrico, isto é, assumirmos que a variável dinâmica da teoria é a métrica  e não a conexão , podemos fazer a extremização em relação à métrica obtendo

   /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =

O método para escrever essa equação variacional na forma tensorial das equações é semelhante à das equações de campo de Einstein[2]. Isso resulta nas equações de campo para teorias :

   /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =

onde  denota a derivada da função f em relação ao escalar de Ricci;  é o D'Alembertiano, e  é o tensor de energia-momento dos campos de matéria.

História[editar | editar código-fonte]

A primeira teoria  data já de 3 anos após a formulação completa da Relatividade Geral, por Hermann Weyl[3], que encontrou uma forma mais geral da Lagrangeana gravitacional na tentativa de unificar os campos gravitacional e eletromagnético. Buchdahl, em 1970, encontrou as equações de campo gerais para uma teoria do tipo, com um enfoque em modelos cosmológicos dentro desse tipo de teoria[4]. Em 1980, Alexei Starobinski formulou um modelo de teoria f(R) para explicar a época inflacionária no Universo Primordial[5]; o sucesso do seu modelo transformou a área em um campo ativo de pesquisa.

Exemplos[editar | editar código-fonte]

Modelo de Starobinsky[editar | editar código-fonte]

Um dos modelos mais consagrados de teoria f(R) é o modelo de inflação de Starobinsky [5], onde a forma da função é dada por

   /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =

onde a constante de acoplamento  tem dimensões de inverso de massa ao quadrado.

Modelo de Hu-Sawicki[editar | editar código-fonte]

Modelos mais recentes de teorias f(R) envolvem principalmente a tentativa de explicar a fenomenologia do modelo padrão da cosmologia sem invocar a existência de uma constante cosmológica ou matéria escura. Um modelo bem sucedido nessa tarefa é o modelo de Hu-Sawicki, em que a forma da função é dada por

   /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =

onde  e  são parâmetros adimensionais; e  é um parâmetro relacionado à escala de energia da teoria[6].



Partículas maciças com interação gravitacional (GIMPs) são um conjunto de partículas teorizadas para explicar a matéria escura em nosso universo, em oposição a uma teoria alternativa baseada em partículas maciças com interação fraca (WIMPs).[1] A proposta faz da matéria escura uma forma de singularidade na energia escura, descrita pelas equações do campo gravitacional de Einstein para a Relatividade Geral.[2]

Histórico[editar | editar código-fonte]

A matéria escura foi postulada em 1933 por Zwicky, que notou o fracasso das curvas de velocidade das estrelas em diminuir quando representadas em função de sua distância do centro das galáxias. Desde o desenvolvimento da Relatividade Geral por Einstein, nosso universo foi melhor descrito na escala macroscópica pelo espaço-tempo quadridimensional cuja métrica é calculada pelas equações do campo de Einstein:

    /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  = 


  G =  

  G =    

  G =   

 G=  G* =  =

 G =     ω 

  G=   G* =   / T] /  c}

 G =  [          ] ω   / T] / c [ =

 G =       /   /    

G* =  = [          ] ω   / T] / c    [x,t] ]  =

 G=    

 G=   

 G =   =

 G =    =


onde  é o tensor de curvatura de Ricci é o escalar de curvatura de Ricci e  é a constante cosmológica. Os WIMPs seriam partículas elementares descritas pelo Modelo Padrão da mecânica quântica, que poderiam ser estudadas por experimentos em laboratórios de partículas como o CERN. Por outro lado, as partículas propostas do GIMP seguiriam as equações de solução do vácuo das equações de Einstein para gravidade. Seriam estruturas singulares no espaço-tempo, embutidas em uma geometria cuja média forma a energia escura que Einstein expressou em sua constante cosmológica

Comentários